- Hopf invariant
- инвариант Хопфа
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
Hopf invariant — In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between spheres. toc Motivation In 1931 Heinz Hopf used Clifford parallels to construct the Hopf map etacolon S^3 o S^2, and proved… … Wikipedia
Hopf fibration — In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3 sphere (a hypersphere in four dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it… … Wikipedia
HOPF (H.) — HOPF HEINZ (1894 1971) Mathématicien allemand, né à Breslau et mort à Zollikon. Heinz Hopf fit ses études à Berlin, où il fut l’élève d’Erhard Schmidt, puis à Heidelberg et à Göttingen, où il rencontra, en 1925, le mathématicien russe Paul… … Encyclopédie Universelle
Heinz Hopf — (November 19, 1894 – June 3, 1971) was a German mathematician born in Gräbschen, Germany (now Grabiszyn, part of Wrocław, Poland). He attended Dr. Karl Mittelhaus higher boys school from 1901 to 1904, and then entered the König Wilhelm Gymnasium… … Wikipedia
Representation theory of Hopf algebras — In abstract algebra, a representation of a Hopf algebra is a representation of its underlying associative algebra. That is, a representation of a Hopf algebra H over a field K is a K vector space V with an action H × V → V usually denoted by… … Wikipedia
Heinz Hopf — (rechts) in Oberwolfach, zusammen mit Hellmuth Kneser Heinz Hopf (* 19. November 1894 in Gräbschen bei Breslau; † 3. Juni 1971 in Zollikon) war deutsch schweizerischer Mathematiker, der ein Pionier der algebr … Deutsch Wikipedia
De Rham invariant — In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1) dimensional manifold, that is, an element of – either 0 or 1. It can be thought of as the simply connected symmetric L group L4k + 1, and thus analogous to the other… … Wikipedia
Steenrod algebra — In algebraic topology, a branch of mathematics, the Steenrod algebra is a structure occurring in the theory of cohomology operations. It is an object of great importance, most especially to homotopy theorists. More precisely, for a given prime… … Wikipedia
List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… … Wikipedia
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Frank Adams — otherpeople2|Francis Adams John Frank Adams (November 5, 1930 ndash; January 7, 1989) was a British mathematician, one of the founders of homotopy theory.LifeHe was born in Woolwich, a suburb in south east London. He began research as a student… … Wikipedia